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We investigate the energy transport in one-dimensional disordered granular solids by extensive numerical
simulations. In particular, we consider the case of a polydisperse granular chain composed of spherical beads
of the same material and with radii taken from a random distribution. We start by examining the linear case, in
which it is known that the energy transport strongly depends on the type of initial conditions. Thus, we consider
two sets of initial conditions: an initial displacement and an initial momentum excitation of a single bead. After
establishing the regime of sufficiently strong disorder, we focus our study on the role of nonlinearity for both
sets of initial conditions. By increasing the initial excitation amplitudes we are able to identify three distinct
dynamical regimes with different energy transport properties: a near linear, a weakly nonlinear, and a highly
nonlinear regime. Although energy spreading is found to be increasing for higher nonlinearities, in the weakly
nonlinear regime no clear asymptotic behavior of the spreading is found. In this regime, we additionally find that
energy, initially trapped in a localized region, can be eventually detrapped and this has a direct influence on the
fluctuations of the energy spreading. We also demonstrate that in the highly nonlinear regime, the differences in
energy transport between the two sets of initial conditions vanish. Actually, in this regime the energy is almost
ballistically transported through shocklike excitations.
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I. INTRODUCTION

Wave scattering and energy transport in disordered media
have for a long time been a matter of great research interest
[1]. The experimental observation of Anderson localization in
different systems such as optical systems [2], ultracold atomic
gases [3], and elastic networks [4] has renewed the research
in this direction. In addition, recent studies on wave scattering
in random media have lead to a plethora of applications in
imaging, random lasing, and solar energy (see, for example,
[5] and references therein).

The key phenomenon employed in these studies is the
spatial wave localization due to disorder, which is a linear
effect relying on keeping phase coherence of participating
waves [6]. However, wave localization can also emerge due
to nonlinearity, as it was first shown in the studies of Fermi-
Pasta-Ulam (FPU) [7], and may lead to energy localization
and propagation through the formation of localized solutions
(solitons, breathers, etc.) in different lattice models [8]. The
interplay of these two localization mechanisms, nonlinearity
and disorder, has been studied extensively in recent years
[9–27]. In most of these studies, an initially localized wave
packet was shown to lead to delocalization and a subdiffusive
spreading of the energy, for sufficiently large nonlinearities.
The most common models that have been studied are the
Klein-Gordon model and the discrete nonlinear Schrödinger
model; the latter in particular has attracted much attention due
to its application to various optical structures and devices. Ex-
perimental studies on optical structures show that nonlinearity
can either enhance localization (for focusing nonlinearity) or
induce delocalization (for defocusing nonlinearity) [28,29].

Granular solids, namely, densely packed arrays of macro-
scopic particles that appear naturally disordered, are a
promising test bed for studying the interplay of disorder
and nonlinearity. The latter originates from the interparticle
Hertzian contacts [30]. An especially appealing characteristic
of these media is their tunable dynamical response ranging

from near linear to highly nonlinear, by changing the ratio
of static to dynamic interparticle displacements. Fabricated
granular solids have allowed the exploration of a plethora
of fundamental phenomena, including solitary waves with a
highly localized waveform in the case of uncompressed crystal
and discrete breathers [31–38]. They have been applied also
in various engineering devices, including shock and energy
absorbing layers [36,39,40], acoustic lenses [41], and acoustic
diodes [42].

For sufficiently weak excitations and in the presence
of precompression, the one-dimensional disordered granular
solid, also called a granular chain, can be approximated by a
disorder harmonic lattice, which has some interesting transport
properties. In particular, it has been shown that different initial
conditions, i.e., initial displacement or momentum excitations,
of a single particle can lead to subdiffusive (displacement)
or superdiffusive (momentum) energy transport [43], as well
as to analytical described asymptotic energy profiles [26].
On the other hand, for sufficiently strong excitations or in
the absence of precompression, the granular chain exhibits
two different types of nonlinearity: (i) a power nonlinearity
stemming from the Hertzian contacts and (ii) a nonsmooth
nonlinearity, which is triggered whenever two beads of the
chain lose contact (gap opening). The latter is present in a
broad class of fragile mechanical systems that lose rigidity
upon lowering the external pressure towards zero, such as
weakly connected polymers [44] and network glasses [45]. It
is also present in cracked solids [46].

Recently, studies of one-dimensional disordered granular
chains have been reported [47–49]. In the absence of pre-
compression, when the nonsmooth nonlinearity is present,
it was shown that if a solitary wave is formed, it features
an exponential decay that strongly depends on the degree
of randomness [48,49]. Similar results were also reported
in a two-dimensional granular solid [50] where the decay
of the amplitude of the wave front was described using an
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analogy between disorder and viscoelastic dissipation. On the
other hand, in the presence of precompression, the power
nonlinearity stemming from the Hertzian contacts leads to
a FPU-like dynamics, which has been studied theoretically
in the presence of disorder [24–26]. However, in the case of
granular chains, this dynamics can be strongly modified by the
presence of the opening of gaps. Thus, the interplay of these
two nonlinear mechanisms is of particular interest and it can
drastically change the transport properties.

Only recently, a study about one-dimensional and pre-
compressed random dimer granular chains [51] has reported
some features of the energy transport. In this work, the
authors compare wave dynamics in chains with three different
types of disorder: an uncorrelated (Anderson-like) disorder
and two types of correlated disorder. For the Anderson-like
uncorrelated disorder, they found a transition from subdiffu-
sive to superdiffusive dynamics depending on the amount of
precompression in the chain. In the present work we consider
a different kind of uncorrelated disorder (i.e., polydispersity
through disorder in the bead radius) and we study both
displacement and momentum initial excitations, emphasizing
their differences and similarities [52]. In particular, we
consider polydisperse disordered granular chains composed of
spherical beads of the same material and with radii taken from
a random distribution. Our motivation is the fact that most
of the granular materials occurring in nature and industrial
application are composed of a broad range of particle sizes
[53]. By considering a single central bead excitation, we study
the transport of energy in these disordered granular chains.

In Sec. II we present the equations of motion in a normalized
form, define the conserved energy of the system, and also
describe the parameters used for the characterization of the
energy transport. Results for the linear case are shown in
Sec. III, where the influence of the strength of the disorder
on the dynamics is studied. In Sec. IV we show the main
results of this work for the case of an initial displacement
excitation and explicitly identify three different regions of
energy transport, a near linear regime, a weakly nonlinear
regime, and a highly nonlinear regime. The energy transport
for the case of an initial momentum excitation is discussed
in Sec. V, presenting differences from and similarities to the
initial displacement excitation. Results concerning the limiting
profile of the energy for the two types of initial conditions are
given in Sec. VI. We summarize our results in Sec. VII.

II. DISORDERED GRANULAR CHAIN

We consider a one-dimensional chain consisting of N + 2
spherical beads, with masses mn (n = 0,1,2, . . . ,N + 1) and
Hertzian contacts as shown in Fig. 1. We consider fixed
boundary conditions for the first and last spherical beads,
namely, u0 = uN+1 = 0, where un is the displacement of
each bead from its equilibrium position. Then the system is
described by the following set of differential equations:

m1ü1 = A1[δ1 − u1]3/2
+ − A2[δ2 + u1 − u2]3/2

+ ,

mnün = An[δn + un−1−un]3/2
+ −An+1[δn+1+un − un+1]3/2

+ ,

mNüN = AN [δN + uN−1−uN ]3/2
+ − AN+1[δN+1 + uN ]3/2

+ ,

(1)

FIG. 1. Sketch of a granular chain with beads of random radius.
Here un denotes the displacement of each bead from its equilibrium
position, while δn is the overlap between two spherical beads due to
the precompression force F .

where An is the contact coefficient between beads n − 1 and
n and δn is the relative static overlap due to a precompression
force F acting on the two boundaries. The dots denote
differentiation with respect to time. The coefficient An for
spherical beads of the same material is given by An =
(2/3)E

√
(Rn−1Rn)/(Rn−1 + Rn)/(1 − ν2) [30], where E and

ν are the elastic modulus and Poisson’s ratio respectively
and Rn is the radius of the nth bead. The static overlap δn

is given by δn = (F/An)2/3 [30]. The [ ]+ sign in Eq. (1)
denotes the following: When the expression inside the square
brackets becomes negative (i.e., the beads are not in contact)
this term becomes zero. In fact, this happens when the relative
displacement between two beads becomes larger than their
overlap un−1 − un > δn, that is, there is a gap between them,
and their relative force vanishes.

Below we will work in dimensionless units, however for
clarity we note that we use a reference radius of R = 0.01 m,
a static force of F = 1 N, and stainless steel spherical beads
(316 type), the elastic modulus of which is E = 193 GPa
while the Poisson ratio is ν = 0.3. Relevant experiments with
granular chains containing few defects can be found in [54].
In the following we will consider a disordered setup where
the radii Rn of the different beads will be taken as a random
variable, with values taken from a uniform distribution within
the range Rn ∈ [R,αR], where the parameter α � 1 describes
the disorder strength. Consequently, the mean value R̃ of the
bead radius is R̃ = (α + 1)R/2. In order to make our equations
dimensionless we implement the following transformations for
time, distance, mass, and stiffness, respectively:

t → ω̃t, δn → δn/δ̃ (un → un/δ̃),
(2)

mn → mn/m̃, An → An/6Ã,

where all the quantities with a tilde are calculated at R̃.
The frequency ω̃c = (6Ãδ̃1/2/m̃)1/2 is the maximum allowed
propagative frequency of a monatomic chain with spherical
beads of radius R̃. The normalization is such that in the case
of no disorder (α = 1) the normalized cutoff frequency is
ωc = 1. The energy of the system is given by the following
expression:

E =
N∑

n=1

En ≡
N∑

n=1

(
p2

n

2mn

+ Vn

)
, (3)

where En and pn = mnu̇n are the energy and momentum of
the nth bead, respectively. The potential Vn for each spherical
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bead is defined as Vn = [V (un) + V (un+1)]/2, where

V (un) = 2

5
An[δn + un−1 − un]5/2

+ − 2

5
Anδ

5/2
n

−Anδ
3/2
n (un−1 − un). (4)

To study the energy transport in this one-dimensional
system we focus on the time evolution of the second moment
of the energy distribution [26] defined as

m2 =
∑

n |n − n0|2hn(t)

E
, (5)

where n0 = N/2 corresponds to the central bead of the chain
and N = 2 × 104 to the total number of spherical beads. In this
last expression, hn = En/E denotes the portion of the total
energy E acquired by the nth bead. Another useful quantity
that characterizes the system is the participation number

P = 1

/ ∑
n

h2
n, (6)

which measures the number of excited beads that significantly
contribute in the energy distribution. It takes the value P = 1
if all the energy is concentrated in one bead while it becomes
P = N in the case of energy equipartition. In our study
we investigate the energy transport under two different sets
of initial conditions: (i) uN/2(0) = u, un�=N/2(0) = 0, and
u̇n(0) = 0 and (ii) un(0) = 0, u̇N/2(0) = u̇, and u̇n�=N/2(0) = 0,
corresponding, respectively, to an initial displacement and an
initial momentum excitation of the central bead. We present
results obtained by averaging over 200 disorder realizations.
Throughout the text the average value over disorder realiza-
tions of a quantity x is denoted by 〈x〉. Simulations are carried
out using the SABA2C symplectic integrator, which allows us
to keep the relative energy error at the order of 10−4 [13,55].
We also note that in our simulations energy never reaches the
boundaries of the chain.

III. HARMONIC CHAIN

For sufficiently small displacements, i.e., un−1 − un 	 δn,
the system of equations (1) can be approximated by the
following linear system:

mnün = Kn(un−1 − un) − Kn+1(un − un+1), (7)

where Kn = (3/2)Anδ
1/2
n is the linear coupling constant. In the

absence of disorder α = 1, the energy spreading is ballistic
and the second moment grows in time as m2(t) ∝ t2, while
〈P 〉 diverges for both displacement and momentum initial
excitations. On the other hand, for the case of randomly
chosen radii, Eq. (7) has the form of a disordered harmonic
chain. This system has already been studied in several works
[26,43,56] with either a mass disorder or a disorder in the
coupling constants Kn. For the granular chain considered here,
having beads of the same material but of different radius, both
the masses mn and the coupling constants Kn are random
variables (both depend on the radius of the beads). Since
masses depend on the radius as m ∝ R3, while the linear
couplings as K ∝ R1/3, we expect that the disorder effect is
stronger due to the masses.

log

FIG. 2. Harmonic chain. (a) Time evolution of 〈log10 m2(t)〉 for
different values of α. The shaded area corresponds to the standard
mean deviation of the measured mean value. Curves from top to bot-
tom correspond to α = 1.1,1.5,2,3, respectively. (b) Time derivative
β of 〈log10 m2(t)〉 given by Eq. (8) as a function of log10 t for α =
1.1,1.5,2,3 from left to right. The horizontal dashed lines indicate the
value β = 0.5. (c) Time evolution of the mean participation number
〈P 〉 for the different values of the disorder parameter α. Curves
from top to bottom correspond to α = 1.1,1.5,2,3, respectively.
(d) Limiting value of the mean participation number 〈P 〉∗ as a function
of α.

In order to investigate the importance of the disorder
parameter α on the system’s behavior, we numerically integrate
Eq. (7) for different values of α and the results are presented in
Fig. 2. In particular, in Fig. 2(a) we show the time evolution of
the average logarithm of the second moment 〈log10 m2(t)〉 with
respect to the logarithm of time. Furthermore, in the panels of
Fig. 2(b) we show the time evolution of β, the time derivative
of 〈log10 m2(t)〉 given by

β = d〈log10 m2〉
d log10 t

. (8)

The derivative is calculated numerically as follows: First we
smooth the values of 〈log10(m2)〉 by using a locally weighted
regression algorithm [57] and then we apply an eighth-order
central finite-difference scheme to compute the derivative. In
[26,43] it was shown that for an initial displacement the energy
transport is subdiffusive. In particular, the second moment
grows in time as m2(t) ∼ tβ with an asymptotic value for
the exponent β(t → ∞) ∼ 0.5. From the first (leftmost) panel
of Fig. 2(b) its readily seen that for α = 1.1 the parameter
β(t) initially acquires a value close to β = 2, indicating a
ballistic spreading of energy, but eventually it drops to smaller
values, implying a slower spreading. However, one cannot
induce a clear subdiffusive behavior for the time scales of
our simulations. The second and third panels of Fig. 2(b)
correspond to stronger disorder (α = 1.5 and 2, respectively)
where the tendency of β to asymptotically reach the value
of β = 0.5 is evident, although some larger fluctuations are
present. In the rightmost panel of Fig. 2(b), we plot the case
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of α = 3; we see that the value of β saturates to β = 0.5
very fast. However, we also notice that for this value of α, the
fluctuations are even larger and this is also depicted by the very
large standard deviation in the mean value of 〈log10 m2(t)〉,
indicated by the shaded area around the lowest curve of
Fig. 2(a). Therefore, a much larger number of realizations
is needed for a better analysis of the α = 3 case.

The respective mean participation number 〈P 〉 for the
different values of the disorder parameter α is shown in
Fig. 2(c). For α = 1.1, the mean participation number does
not saturate, at least on the times of our simulations. On
the other hand, for stronger disorder, e.g., α = 2, it acquires
a limiting value depending on the disorder parameter. The
dependence of the numerical estimation of the limiting value
of 〈P (t → ∞)〉 = 〈P 〉∗ for different values of α is shown in
Fig. 2(d). These estimations are obtained using the results of
Fig. 2(c) as the mean value of 〈P 〉 at the second half of the last
decade of the simulation, i.e., for 5 × 103 � t � 104. Thus
we may identify a weak disorder regime (α � 1.5), where
〈P 〉∗ has a value larger than 10 and approaches the total
number of particles N in the case of no disorder (α = 1), and a
strong disorder regime (α > 1.5), where it saturates to values
of about ten beads or fewer. For this reason and due to the
fact that for values α � 3 the smoothing of large fluctuations
of the computed quantities would imply many more disorder
realizations, we restrict our analysis to the disorder regime
with α = 2.

We note that results similar to the ones of Fig. 2 were
obtained for the case of initial momentum excitation. In
particular, we recovered that the asymptotic value of β is 1.5,
in the case of α = 2. In the rest of this work we systematically
investigate the effect of the nonlinearity on our system.

IV. DISPLACEMENT EXCITATION

In this section we present our findings for the transport
of energy induced by an initial displacement of the central
spherical bead in the chain. Typical results of the dynamics
observed for different amplitudes of the initial displacements
are shown in Fig. 3. The top and middle panels illustrate clearly
that a localized state is formed near the initially excited bead,
while there are two propagating fronts traveling towards the
edges of the chain. These results show that for an increasing
amplitude of the initial excitation, these fronts are found to be
propagating faster. In the bottom panel, which corresponds
to u = 10, the behavior is significantly altered, since now
the energy looks to be more equally distributed through the
lattice. This fact is better illustrated by looking at the insets
(on the right-hand side of each panel), where we show the
corresponding energy profile at a late time instant t = 2 × 103

for each case. For the cases of the top and middle panels, it
can be readily seen that the energy around the initially excited
bead is almost five orders of magnitude larger than the energy
of more distant beads. On the other hand, in the bottom panel
the differences of energy between the central region and the
rest of the chain are significantly smaller.

In what follows we discuss in more detail the outcomes
of extensive numerical simulations for several values of the
nonlinearity strength. The main results are summarized in
Fig. 4. In particular, in Fig. 4(a) we plot the time evolution of

FIG. 3. Time evolution of the logarithm of the energy En of a
portion of the chain near the initially excited bead at n = N/2 = 104.
Different panels (from top to bottom) correspond to different values
of the initial displacement u and in particular to u = 0.01, 1, and 10,
respectively. The coloring of each lattice site, according to the color
scale shown on top of the panels, denotes the log10(En) value of the
corresponding bead. The insets on the right of each panel show the
corresponding energy profile at a late time instant t = 2 × 103.

〈log10 m2〉, in Fig. 4(b) we plot the time evolution of its time
derivative, and in Fig. 4(c) we show the mean participation
number 〈P 〉 as a function of time.

A. Near linear regime

Let us first note that for values of the initial excitation
u < 0.1 [see, e.g., the blue (lowest) line in Fig. 4(b), which
corresponds to u = 0.01], we observe that β ≈ 0.5 at about
t ≈ 104. Additionally, the mean participation number for this
case [Fig. 4(c)] is found to practically saturate to the same
value as in the harmonic chain. Thus, we conclude that for
values of u < 0.1 the nonlinear model is characterized by a

log

FIG. 4. Time evolution of (a) the averaged logarithm of the
second moment 〈log10 m2〉 for different initial displacements u,
(b) the time derivative β(t) of the respective curves of (a), and (c) the
mean value of the participation number 〈P 〉.
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log

FIG. 5. (a) Time evolution of the parameter β for different values
of the initial displacement excitation u = 0.2,0.4,0,6 (from left to
right) in the regime where energy transport crosses from subdiffusive
to superdiffusive behavior. The horizontal dashed lines indicate the
value β = 1. (b) Time evolution of the mean participation number for
displacement excitations corresponding to the top panels.

near linear regime, having qualitatively and quantitatively the
same energy transport properties as its linear counterpart, at
least for the time scales of our simulations.

B. Weakly nonlinear regime

From the results of Fig. 4 it can be readily seen that already
for an initial condition of u = 0.1, the value of β deviates
from its behavior in the linear case, becoming larger than 0.5.
However, a very abrupt change in the behavior of β is observed
at the value u = 1 and the system undergoes a transition from
subdiffusion to superdiffusion. Notice also that, although for
u = 0.1 the mean participation number in Fig. 4(c) saturates
to a value of 〈P 〉 ≈ 10, for the value u = 1 it is found to
continuously increase. These two results indicate the existence
of a regime of intermediate dynamics for values between u =
0.1 and 1.

In order to further understand the dynamics in this regime,
we compute the parameter β, as well as the mean partici-
pation number 〈P 〉, for some intermediate values of initial
displacements, i.e., u = 0.2,0.4,0.6. The results obtained,
which are plotted in Fig. 5, clearly show that a transition from
subdiffusion to superdiffusion is carried out in this regime.
In Fig. 5(a) the parameter β exhibits many fluctuations and
shows no evident tendency to saturate into a constant value
until the end of our numerical simulations. In all cases shown
in Fig. 5(a), β initially approaches the diffusive value β = 1
but later starts to decrease. Furthermore, at a time interval
between t ≈ 102 and 103 it saturates to an almost constant
value somewhat below β = 1, but eventually the dynamics
changes and β starts to increase again, becoming larger than
1. This behavior creates a characteristic local minimum of β(t)
for all studied cases shown in Fig. 5. This result is in accord
with the recent study of [26], where it was found that in the
FPU problem, until the end of the times studied, there was no
clear limiting value for the exponent of m2.

It is also relevant to discuss the behavior of the mean
participation number 〈P 〉 in this weakly nonlinear regime.
As it is shown in Fig. 5(b), after an initial increase of 〈P 〉
its value remains practically constant with a value of around

FIG. 6. Normalized mean energy 〈hN/2〉 of the central bead at
n = N/2 as a function of time for different initial displacements;
from top to bottom, u = 0.1,0.6,1,10,100.

〈P 〉 ≈ 10, between t ≈ 102 and 103, but after this time interval
〈P 〉 increases, exhibiting a diverging trend. This transition is
attributed to nonlinearity, since it is never observed in the near
linear regime or in the exact linear case. To further understand
the origin of this behavior, we plot in Fig. 6 the normalized
mean energy of the central bead 〈hN/2〉 as a function of
time. For u = 0.1 after a small transient time of t ≈ 10, the
central bead retains a large amount of the total energy of
the system, keeping it up to the end of our simulations at
t = 104. This behavior is understood by the fact that most of the
energy is concentrated around the initially excited bead, due to
the presence of the disorder-induced localized modes. These
modes remain localized throughout the simulation. However,
for larger values of the initial excitation, i.e., 0.1 < u � 1, we
observe that, although for a large time interval (10 � t � 103)
most of the energy is trapped around the central bead, after
sufficient time the energy of this bead starts to decrease. This
signals the detrapping of energy from this bead and its release
to the rest of the chain.

C. Highly nonlinear regime

For even larger values of the initial condition u > 1, i.e.,
for larger nonlinearities, we observe in Fig. 4 that the exponent
β saturates to an almost constant value at about t ≈ 102

describing a superdiffusive regime. These values are larger
with respect to the values of β seen in the weakly nonlinear
regime. It is worth noting that in this regime the fluctuations
in the values of β are much smaller than in the previous
regime. From Fig. 6 we also conclude that the normalized
mean energy of the central bead 〈hN/2〉 for u = 10,100
continuously decreases as a function of time, in contrast
with the weakly nonlinear regime. To further investigate the
dynamics in this regime we evaluate the probability of gap
openings between beads as obtained by counting the number
of gaps in each site for all 200 disorder realizations and plot
in Fig. 7 the average value obtained. In great contrast to the
weakly nonlinear regime where no gaps appear, here we find
that not only are there always many gaps around the initially
excited bead, but also these gaps propagate in the system.
This observation strongly suggests that for such large initial
excitations, a different dynamical regime is present, where the
dynamics is governed not by the FPU-like nonlinearity but by
the nonsmooth nonlinearity of the opening of gaps. We call
this regime highly nonlinear.
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FIG. 7. Probability of a gap opening as a function of time for two
different initial displacements in the highly nonlinear regime: u = 10
(top panel) and u = 100 (bottom panel). We focus on the dynamics
around the central bead N/2. The black in the color map corresponds
to probability 1 while the white to 0.

A particular limit of this highly nonlinear regime corre-
sponds to the case of F = 0, which results in δn = 0 in Eq. (1).
This is also called a sonic vacuum [31] due to the fact that the
system does not support the propagation of linear waves. This
regime has been studied extensively for the case of no disorder,
namely, when α = 1. It is known that a solitary solution
exists in this limit with a highly localized waveform [31].
For the case of a binary system with a disordered distribution
between beads of two different masses, similar solitary waves
of decreasing amplitude were found in the weak disorder
limit, while in the strong disorder case a delocalized wave
was observed [49]. Similar results were obtained for the case
of two-dimensional granular solids, with an initial excitation
only in one direction: Weak disorder induces an exponentially
decreasing solitary wave that eventually gives its place to
a delocalized shocklike profile, while strong disorder only
exhibits a shocklike structure [50,58]. The latter works also
showed that at the position nf of the front of the shocklike
structure, the velocity scales as u̇f ∝ n

−1/2
f .

Let us now explore the transition from the highly nonlinear
regime to the singular case of F = 0. First note that, as shown
in Fig. 4(b), for F = 0 the exponent β reaches the value β ≈
1.8, which is the maximum value, while the mean participation
number is qualitatively similar for all the cases in the highly
nonlinear regime. Furthermore, in Fig. 8 we plot the velocity
profiles at five time instants for the case of F = 0 with u = 1
and for the case of F �= 0 with u = 10 and 100. For F = 0,
in agreement with [50,58], we observe the formation of a
propagating front with a characteristic triangular profile, which

FIG. 8. Velocity profiles u̇n for five time instants, normalized to
its maximum value for different initial conditions. Shown on the left
is the case of F = 0 with u = 1; the middle and right show the case
of F �= 0 with u = 100 and 10, respectively.

log

FIG. 9. Same as in Fig. 4 but for different initial momentum
excitations u̇N/2(0) = u̇.

however becomes less sharp in time (see the leftmost case in
Fig. 8). In fact, by plotting a fitting curve of the form n

−1/2
f ,

shown as an envelope on top of the velocity profiles [solid
(green) line], it can be clearly seen that the propagating front
follows this −1/2 power law trend.

More importantly, we find that even in the case of a finite
precompression force F �= 0, a similar structure can be formed
and is propagating with the same power law decay of its
amplitude (see the middle case in Fig. 8). However, for the case
of u = 10, although the peak of the propagating form seems
to follow a similar trend, the observed structure is different: It
does not exhibit a long tail that terminates at the central bead
(n = N/2), but it exhibits a finite width of the order of 100
beads (see the rightmost case in Fig. 8).

V. MOMENTUM EXCITATION

As we mentioned in the Introduction, the energy transport
in disordered linear chains strongly depends on the initial
condition [26,43]. Thus, in order to complete the dynamical
study of our model we also investigate the case of an
initial momentum excitation of the central spherical bead by
increasing the initial velocity u̇N/2(0) = u̇. The results are
summarized in Figs. 9 and 10.

log

FIG. 10. Same as in Fig. 5 but for different initial momentum ex-
citations u̇N/2(0) = u̇. The top panels correspond to u̇ = 0.1,0.2,0.4
from left to right.
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In the linear case the energy spreading for an initial
momentum excitation is known to be superdiffusive with
β = 1.5 [43]. By numerical simulations of the normalized
nonlinear equations of motion (1), we found that the energy
spreading remains superdiffusive with β = 1.5 for all initial
velocities u̇ < 10 [see Figs. 9(b) and 10(a)]. This is in contrast
to the case of the initial displacement excitation, where the
relevant values of β exhibit large variations. For u̇ � 10 the
exponent β grows and eventually reaches the maximum value
of β ≈ 1.8, which is also the corresponding value of β of the
limiting case of F = 0. We again identify this regime as the
highly nonlinear regime.

On the other hand, the mean participation number 〈P 〉
exhibits behavior similar to the case of initial displacement
excitations. For u̇ � 0.1 it saturates to a constant value of
about 20 beads, while for u̇ > 0.1 it continuously increases.
Looking closer to 〈P 〉, shown in Fig. 10(b), we note that the
mean participation number reaches the limiting constant value
of about 20 beads for u̇ = 0.1, i.e., the near linear regime.
However, for u̇ = 0.2,0.4, although it seems to saturate to
a constant value for a long time, finally it starts to deviate
and increase continuously. This again suggests that there
is an intermediate regime for 0.1 < u̇ � 1 in which energy
detrapping is observed. This is the weakly nonlinear regime.

To conclude, compared to the case of displacement initial
excitations, there is a difference in the energy transport
properties in the intermediate regime that we call weakly
nonlinear. Although the mean participation number 〈P 〉 shows
the same behavior, in contrast to the displacement excitations,
for momentum initial excitations both the near linear and
weakly nonlinear regimes are characterized by an asymptotic
value of the parameter β = 1.5, namely, the same as for the
linear case.

Another interesting point to be mentioned is that, although
in the linear case the energy transfer is subdiffusive or su-
perdiffusive for an initial displacement or an initial momentum
excitation, respectively, in the highly nonlinear regime and
more profoundly in the limiting case of F = 0 both excitations

result in the same behavior of energy transport. In fact, in this
limit, not only the limiting value of β (as it was also found in
Ref. [52] for a disordered dimer), but also the dynamics of the
derivative β of 〈m2〉 are very similar.

VI. ASYMPTOTIC PROFILES

According to Ref. [26], the asymptotic dependence of the
energy moments (not only m2) can be characterized by the
asymptotic energy profile of the lattice, at least in the linear
case. In particular, it was shown in that work that the energy
profile far away from the central excitation has the form
〈hn〉 ∼ |n − N/2|−η. The exponent η was found to be η = 5/2
and 3/2 for displacement and momentum initial excitations,
respectively. In Fig. 11 we show for both displacement (top
panels) and momentum initial excitations (bottom panels)
three different instants of the energy profile at sufficiently
large times, covering all the dynamical regimes from near
linear (left column) to highly nonlinear (right column). In the
left panels (near linear regime) it can be readily seen that, in
accord with the predictions for the linear problem, the three
profiles are almost identical, indicating the fact that the energy
distribution has reached a limiting profile that does not change
for later times. For comparison, we plot curves (dashed lines)
with a slope of 5/2 (top) and 3/2 (bottom). Note also that the
energy distribution near the central bead (i.e., for n ≈ N/2
in the figure) is the same for the three different profiles. This
indicates that the energy of these sites also does not change in
time and the mode around the center remains localized.

The top (bottom) second column panel of Fig. 11 depicts
the energy profile for an initial displacement (momentum)
excitation with u = 1 (u̇ = 1). In this case it can be readily
seen that for the initial displacement excitation (top) the three
profiles do not overlap and also the slopes are not exactly 5/2.
This is another indication for the appearance of the weakly
nonlinear regime that exhibits nontrivial dynamics. Note that
for the momentum excitation (bottom) the profiles do overlap.
This is in accord with the discussion in Sec. V about the
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FIG. 11. Profiles of the energy distribution for initial displacement (top panels) and momentum (bottom panels) excitation. The values of
the initial displacement excitations are u = 0.01,1,10 for the first three top panels (from left to right) and u = 1 when F = 0 for the fourth
top panel. The values of the initial momentum excitations are u̇ = 0.01,1,10 for the first three top panels (from left to right) and u̇ = 1 when
F = 0 for the fourth top panel. These values cover all the dynamical regimes: from the near linear (left column) to the highly nonlinear (right
column) regime. The different profiles are taken at times t ≈ 1500 (curve b, blue), t ≈ 5000 (curve g, green), and t ≈ 10 000 (curve r, red).
The dashed lines denote slopes of 5/2 (top) and 3/2 (bottom). For the top third panel, the additional solid line denotes the slope of 3/2.
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limiting value of β, which is the same for both the near linear
and the weakly nonlinear regime. Additionally, for both cases
of initial conditions, we observe a small but non-negligible
deviation of the energy around the center, which confirms the
fact that the localized mode around the center starts to lose its
energy.

For larger values of the initial condition as shown in the top
(bottom) third column panel of Fig. 11, the profile of the energy
is substantially different. It is characterized by two different
regimes: a weakly localized part with almost 102 beads with a
similar amount of energy, forming an almost straight horizontal
line, and a decaying tail. However, the weakly localized portion
of the energy is spreading and loses its energy, as for larger
times the almost straight horizontal part of the profile becomes
longer, having smaller energy values. We also note that once
again the slope of the energy profiles for initial displacements
(top panel) is not 5/2 as time increases but interestingly enough
it reaches a value that is closer to 3/2 (see the gray solid
line). We recall that for this initial displacement excitation
with u = 10, β asymptotically reaches the value of 1.5 (see
Fig. 4), which is also the limiting value of β of an initial
momentum excitation of the linear problem.

Finally, for the particular case of F = 0, as shown in the
top (bottom) fourth column panel of Fig. 11, the asymptotic
energy profile is similar to a ballistic propagation where the
energy differences between excited beads decrease drastically,
but in this case the propagating front does not exhibit a sharp
profile. In fact, this front has a very large tail that is due to the
shocklike structure that was mentioned in Sec. IV C.

VII. CONCLUSION

In this work we numerically investigated the energy trans-
port in a one-dimensional granular solid composed of spherical
beads of randomly distributed radii that interact via Hertzian
forces. We studied the dynamics by using two different
localized initial conditions, i.e., initial displacement and initial
velocity excitations of the central bead of the chain, and by
increasing the amplitude of these excitations. We were able
to identify three different dynamical spreading regimes with
distinct characteristics: the near linear, the weakly nonlinear,
and the highly nonlinear.

In the near linear regime, part of the initial energy remains
localized around the central excited bead while two coun-
terpropagating fronts, coherent phonons, travel through the
chain. We found that the energy transport is identical to that of
a linear chain, with either mass or coupling disorder, at least up
to the time scales reached in our simulations. The spreading of
the energy is characterized by an asymptotic time dependence
of the mean second moment of the energy m2 of the form
〈m2〉 ∼ tβ , where β = 0.5 and 1.5 for an initial displacement
and an initial momentum excitation, respectively. Additionally,

the mean participation number 〈P 〉 in this regime converges to
a constant value, which depends on the strength of the disorder.

For larger values of the initial conditions, in the weakly
nonlinear regime, we found that for initial displacement
excitations the energy spreading does not exhibit a clear
asymptotic time dependence. However, it does cross to a
superdiffusive behavior, since for large enough time scales, the
slope of m2 becomes larger than 1. In fact, this behavior, which
was also observed in the study of [26] for a FPU lattice, is
found to be closely connected to the nonlinear dynamics of the
localized state formed around the central spherical bead. We
found that after a sufficient time interval [between 102 and 103

normalized time units; see Eq. (2)], the central localized region
consisting of about ten beads starts to delocalize and the energy
stored in these spherical beads starts to radiate into the system.
In this weakly nonlinear regime, the dynamics is governed by
the power Hertzian nonlinearity. On the other hand, for initial
momentum excitations, the slope of m2 remains around 1.5, as
in the near linear regime, but 〈P 〉 exhibits the same behavior
as for displacement excitations.

For even larger amplitudes of the initial excitation, the
energy transfer becomes substantially different. The energy
profile of the chain reveals an almost ballistic behavior with
an almost equal distribution of the energy around the excited
portion of the chain. In this regime, which we characterized
as highly nonlinear, the system exhibits a large number of
gaps between beads, which is a nonsmooth nonlinear process.
We found that these gaps propagate in the chain and that the
transport of energy is mediated by a shocklike structure, which
bares similarities to the self-similar solution found in [58].

An important result of our work is the following: Although
it is known that the energy transport for the disordered linear
chain strongly depends on the type of initial conditions (i.e.,
displacement or momentum excitations), we found that in the
highly nonlinear regime it is independent of the initial con-
dition. This is probably a rather general feature of disordered
granular chains as it was very recently observed in different
disordered dimer granular chain [52]. In particular, in the linear
case the asymptotic time dependence of 〈m2〉 shows a slope of
β = 0.5 (displacement) and β = 1.5 (momentum), while for
the extreme nonlinear limit of F = 0 both initial conditions
lead to a slope of β ≈ 1.8. Additionally, the energy profiles in
this regime show that there is no distinct localized state.
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